QUALITY OF SURFACE WATER ## WALKER RIVER BASIN Walker Lake is a perennial, natural terminal lake that became at-risk because of upstream agricultural diversions. Between 1882 and 1994, upstream diversions caused Walker Lake to decline about 140 feet and the total dissolved solids (TDS) concentrations to increase from 2,500 mg/L to 13,300 mg/L. The Lahontan cutthroat trout (LCT), a threatened species that is native to Walker Lake, has adapted to the high TDS of terminal basins. However, diversions have lowered lake levels and increased TDS to concentrations that threaten the survival of the LCT. The objectives of this project are to develop (1) an improved water budget for Walker Lake and (2) the capability to predict how changes in irrigation practices in and below Mason Valley will affect flows in the lower Walker River so alternatives for supplementing flows can be evaluated. ## WATER-QUALITY DATA, WATER YEAR OCTOBER 2003 TO SEPTEMBER 2004 | Station number | | | Station name | | | | | | Date | Time | Sam | ple type | Instantaneous discharge, cfs (00061) | |--|--|--|--|---|--|--|---|---|--|--|--|--|--| | 10293500
10300000
10301500 | WEST | WALKER | RIVER AB
RIVER NE
NEAR WA | AR HUDS | | | | | 03-08-
03-08-
03-08-
03-08- | 04 0950
04 1430 | Enviro | onmental
onmental
onmental | 33
45
24 | | 10301600 | | | | | | | | | | | 21 | | | | 10301720
10302002
10302005
10302025 | WALKER RIVER AT PT SITE BELOW WEBER RESERVOIR NEAR SCHURZ, NV WALKER RIVER AT LATERAL 2-A SIPHON NEAR SCHURZ, NV WALKER RIVER AT POWERLINE CROSSING NEAR SCHURZ, NV WALKER RIVER NEAR MOUTH AT WALKER LAKE | | | | | | | 03-08-
V 03-09-
03-09-
03-09-
03-09- | 04 0900
04 1130
04 1400 | Enviro
Enviro | onmental
onmental
onmental | 2.6
.52
1.2
1.7 | | | Date | Baro-
metric
pres-
sure,
mm Hg
(00025) | Dis-
solved
oxygen,
mg/L
(00300) | Dissolved oxygen, percent of saturation (00301) | pH,
water,
unfltrd
field,
std
units
(00400) | Specif.
conduc-
tance,
wat unf
uS/cm
25 degC
(00095) | Temper-
ature,
air,
deg C
(00020) | Temper-
ature,
water,
deg C
(00010) | Calcium
water,
fltrd,
mg/L
(00915) | Magnes-
ium,
water,
fltrd,
mg/L
(00925) | Potas-
sium,
water,
fltrd,
mg/L
(00935) | Sodium,
water,
fltrd,
mg/L
(00930) | Alkalinity, wat flt inc tit field, mg/L as CaCO3 (39086) | Bicarbonate,
wat flt
incrm.
titr.,
field,
mg/L
(00453) | | 03-08-04
03-08-04
03-08-04
03-08-04
03-08-04 | 652
652
657

659 | 10.5
10.3
8.5

9.1 | 113
93
107

101 | 7.4
7.5
7.5
7.4 | 350
503
484

455 | 18.0
14.0

 | 11.6
9.0
19.0

13.3 | 31.6
40.5
39.2
38.3
36.9 | 7.15
10.3
9.24
9.10
8.95 | 4.67
4.35
5.08
4.98
4.62 | 32.6
52.9
52.1
50.4
46.3 | 117
150
147

150 | 145
183
179

182 | | 03-08-04
03-09-04
03-09-04
03-09-04 | 660
659
658
660 | 6.2
6.6
6.3
7.7 | 64
72
75
93 | 7.6
7.5
7.6
8.1 | 511
552
629
1,040 |

 | 10.5
12.4
16.7
17.1 | .02
36.6
46.5
55.0
42.8 | <.008
8.17
11.3
14.1
12.8 | <.16
4.99
5.81
8.69
11.7 | <.10
62.8
59.1
61.4
168 | 190
191
209
271 | 232
233
255
338 | | | | | Date | Chloride,
water,
fltrd,
mg/L
(00940) | Fluoride,
water,
fltrd,
mg/L
(00950) | Silica,
water,
fltrd,
mg/L
(00955) | Sulfate
water,
fltrd,
mg/L
(00945) | Residue
on
evap.
at
180degC
wat flt
mg/L
(70300) | Iron,
water,
fltrd,
ug/L
(01046) | Mangan-
ese,
water,
fltrd,
ug/L
(01056) | | | | | | | | 03-08-04
03-08-04
03-08-04
03-08-04
03-08-04 | 7.09
34.2
25.0
25.4
20.8 | .5
.9
.8
.8 | 20.4
20.5
19.9
<i>19.6</i>
13.9 | 44.3
45.1
56.1
55.9
48.4 | 225
308
301
302
278 | 57
12
E5
<i>E4</i>
10 | 115
140
19.2
<i>18.5</i>
344 | | | | | | | | 03-08-04
03-09-04
03-09-04
03-09-04
03-09-04 | <.20
19.8
22.2
24.9
64.5 | <.2
.8
.7
.6
1.9 | <.04
25.6
14.6
32.1
31.2 | <.2
44.1
53.2
77.7
152 | <10
320
341
404
666 | <6
E6
7
E6
20 | .9
985
178
63.4
78.4 | | | | Remark codes used in this table: < -- Less than E -- Estimated value